

ДАТЧИК СЕЙСМИЧЕСКИХ ТОЛЧКОВ УСПД ZET 7000 mod.8352-DP

Руководство по эксплуатации

Содержание

Bı	зеден	ие	
1	Опи	сание	4
	1.1	Назначение датчика	4
	1.2	Устройство и принцип работы	4
	1.3	Эксплуатационные характеристики датчика	5
	1.4	Внешний вид датчика	6
2	Ком	плектность поставки	8
3	Поді	готовка к работе с датчиком	9
	3.1	Распаковывание, подготовка к работе	9
	3.2	Правила эксплуатации встроенного аккумулятора	9
	3.3	Правила замены встроенного аккумулятора	9
	3.4	Установка ПО на компьютер	
	3.5	Подключение датчика к компьютеру	
	3.6	Конфигурирование датчика	
4	Уста	новка датчика на объекте испытания	
	4.1	Общие требования	
	4.2	Установка датчика на металлическую поверхность	
	4.3	Установка датчика на бетонную поверхность	
	4.4	Установка датчика на цилиндрическую поверхность (трубу)	
5	Рабо	та с датчиком	
	5.1	Запись сигналов на внутреннею память датчика	21
	5.2	Копирование записанных сигналов на диск компьютера	
6	Техн	ическое обслуживание	
7	Пра	вила хранения и транспортирования	
$\Pi_{]}$	рило	жение А. Пример применения УСПД ZET 7000 mod. 8352-	DP в составе
си	стем	ы сейсмического обнаружения для лифтов категории 3	

Введение

Настоящее руководство по эксплуатации предназначено для изучения принципов работы с датчиком сейсмических толчков УСПД ZET 7000 mod. 8352-DP (далее по тексту – датчик).

К работе с датчиком допускаются лица, имеющие квалификацию техника или инженера. При работе с датчиком необходимо руководствоваться настоящим руководством по эксплуатации.

Для настройки датчика, а также анализа регистрируемых данных в комплекте с датчиком поставляется программное обеспечение (ПО) ZETLAB. ПО ZETLAB оснащено встроенным руководством, описывающим правила работы с ним. При необходимости обратиться к встроенному руководству ПО ZETLAB используйте клавишу «F1» клавиатуры.

Предприятие-изготовитель оставляет за собой право вносить в конструкцию датчика незначительные изменения, не влияющие на технические характеристики, без коррекции эксплуатационно-технической документации.

Принятые сокращения

ОС - операционная система.

ПК - персональный компьютер (ноутбук или иной компьютер, используемый для работы с аппаратурой СДЛ).

ПО – программное обеспечение.

СДЛ - система диагностики лифтов.

ЭТМС – Общество с ограниченной ответственностью «Электронные технологии и метрологические системы»

1 Описание

1.1 Назначение датчика

Датчик сейсмических толчков с цифровым выходом УСПД ZET 7000 mod. 8352-DP предназначен для промышленного и гражданского использования в бытовых или жилых газораспределительных сетях, например для систем отключения котельной от газовой магистрали при землетрясениях, системы диагностики лифтов и т.д.

Датчик контролирует сейсмическую активность, и при превышении заданного порогового уровня ускорения выдаёт управляющий сигнал для отключения оборудования от общей сети.

1.2 Устройство и принцип работы

Структурная схема датчика сейсмических толчков представлена на Рис. 1.1.

Рис. 1.1 Структурная схема датчика сейсмических толчков

В состав датчика сейсмических толчков входит:

- виброметр интеллектуальный цифровой ZET 7052-N со встроенным трёхосевым чувствительным элементом, осуществляющим преобразование постоянной составляющей ускорения в цифровой код по трем взаимно перпендикулярным осям X, Y и Z;
- управляющий модуль для формирования трех сигналов типа «сухой контакт»;
- SD-карта, для записи сигналов ускорения на внутреннюю память устройства;
- литий-ионная (LI-ion) аккумуляторная батарея типа 18650, позволяющая датчику работать в автономном режиме на протяжении не менее 8 часов.

Датчик сейсмических толчков, установленный в месте регистрации сейсмического воздействия, обеспечивает регистрацию ускорений по трем измерительным осям X, Y, Z цифрового виброметра ZET 7052-N, входящего в состав датчика.

Зарегистрированные сигналы в цифровом формате записываются в память устройства на SD-карту и передаются на управляющий модуль для формирования трех сигналов типа «сухой контакт».

Управляющий модуль «сухой контакт» производит мониторинг регистрируемых уровней по каждой из измерительных осей (X, Y и Z) и при детектировании превышения заданных пороговых значений ускорений производит формирование сигнала, передаваемого на реле, которое в свою очередь формирует сигнал типа «сухой контакт» к исполнительному механизму.

Формируемые сигналы типа «сухой контакт» передаются через контакты разъема, расположенного на корпусе датчика (контакты с индексом «OUT» в Табл. 1.2).

Сброс состояния реле происходит при поступлении логического сигнала со сторонней системы на соответствующие контакты разъема датчика (контакты с индексом «IN» в Табл. 1.2).

Пример применения датчика в составе системы сейсмического обнаружения для лифтов категории 3 приведен в Приложении А.

1.3 Эксплуатационные характеристики датчика

Эксплуатационные характеристики датчика приведены в Табл. 1.1.

Табл. 1.1 Эксплуатационные характеристики датчика

Параметр	Значение		
November of the second polymers	Виброускорение		
измеряемая физическая величина	(по осям Х, Ү, Ζ)		
Режимы работы регистрации данных	Циклическая		
Выходной сигнал:			
- количество:	3		
- тип сигнала:	«Сухой контакт»		
- максимальное напряжение:	300 B		
- максимальный ток:	1 A		
Входной сигнал:			
- тип сигнала:	TTL		
- максимальное напряжение:	5 B		
Тип аккумулятора	Li-ion, съемный, 18650		
Время работы в автономном режиме	8 ч.		
Рабочий диапазон температур	от -40 до +85 °С		
Габаритные размеры	130×94×100 мм		
Масса, не более	300 г		

1.4 Внешний вид датчика

Корпус датчика имеет внешний вид, приведенный на Рис. 1.2.

Рис. 1.2 Внешний вид датчика

На корпусе датчика расположен разъем, предназначенный для подключения исполнительных механизмов с целью формирования сигналов типа «Сухой контакт». В *Табл. 1.2* приведена информация о назначение контактов разъема датчиков.

№ контакта	Обозначение	Назначение	
1	PWR	Внешнее питание 9-36В, контакт «+».	
2	GND	Внешнее питание 9-36В, контакт «-».	
3	GND	Внешнее питание 9-36В, контакт «-».	
4	GND	Внешнее питание 9-36В, контакт «-».	
5	IN3_1	Вход реле 3, контакт «1».	
6	OUT3_1	Выход реле 3, контакт «1».	
7	IN3_2	Вход реле 3, контакт «2».	
8	OUT3_2	Выход реле 3, контакт «2».	
9	IN2_1	Вход реле 2, контакт «1».	
10	OUT2_1	Выход реле 2, контакт «1».	
11	IN2_2	Вход реле 2, контакт «2».	
12	OUT2_2	Выход реле 2, контакт «2».	
13	IN1_1	Вход реле 1, контакт «1».	
14	OUT1_1	Выход реле 1, контакт «1».	
15	IN1_2	Вход реле 1, контакт «2».	
16	OUT1_2	Выход реле 1, контакт «2».	

Табл. 1.2 Назначение контактов разъема датчика

Внешний вид верхней панели датчика с маркировкой приведен на Рис. 1.3.

Рис. 1.3 Внешний вид панели датчика

На крышке датчика расположены элементы управления, подробная информация по которым представлена в *Табл. 1.3*.

Табл. 1	3 Назначение	элементов	управления	датчика
---------	--------------	-----------	------------	---------

N⁰	Обозначение	Назначение
1	USB	Разъем «USB» предназначен для подключения датчика к ПК по интерфейсу USB и переноса записанных данных. Также предназначен для подключения к датчику зарядного устройства.
2	Индикатор	На индикаторе отображаются текущие измеренные значения ускорения.
3	Кионка	Длительное удерживание кнопки для включения/выключения записи.
3	кнопка	Короткое нажатие кнопки для переключения отображения измеряемых параметров.

<u>Внимание!</u> Датчик измеряет ускорение по трем взаимно перпендикулярным осям. Измерительная ось Z ортогональна основанию и направлена от основания к крышке, а оси X и Y — параллельны основанию.

2 Комплектность поставки

Комплектность поставки датчика приведена в Табл. 2.1.

Табл. 2.1 Комплектность поставки датчика

№	Наименование	Кол- во	Примечание
1	Датчик сейсмических толчков УСПД ZET 7000 mod. 8352-DP.	1 шт.	
2	Электронный ключ ZETKEY.	1 шт.	
3	USB флеш-накопитель с ПО ZETLAB VIBRO.	1 шт.	
4	Кабель HighSpeed USB 2.0.	1 шт.	
5	Паспорт. Датчик сейсмических толчков УСПД ZET 7000 mod. 8352-DP.	1 экз.	
6	Руководство по эксплуатации. Датчик сейсмических толчков УСПД ZET 7000 mod. 8352-DP.	1 экз.	

3 Подготовка к работе с датчиком

3.1 Распаковывание, подготовка к работе

Снятие транспортировочной упаковки производить на горизонтальной, устойчивой поверхности, освобожденной от посторонних предметов. После снятия транспортировочной упаковки следует:

- Проверить комплектность системы на соответствие составу, указанному в главе 1.2;
- Произвести внешний осмотр, обратив внимание на отсутствие механических повреждений.

Перед началом работы с датчиком необходимо убедится, что встроенная аккумуляторная батарея заряжена. При необходимости следует зарядить аккумуляторную батарею, руководствуясь правилами, описанными в разделе 3.2.

3.2 Правила эксплуатации встроенного аккумулятора

Датчик оснащен литий-ионной (Li-ion) аккумуляторной батареей типа 18650. Заряд встроенного аккумулятора следует проводить в следующей последовательности:

a) Подключить USB-кабель к разъему «USB», расположенному на панели датчика. Ответную часть кабеля подключить к компьютеру, или зарядному устройству.

b) Во время зарядки аккумуляторной батареи на индикаторе датчика отображается соответствующая информация.

с) По окончанию заряда аккумулятора необходимо отключить USB-кабель от датчика.

<u>Внимание!</u> Для продления срока службы аккумулятора при длительном хранении датчика необходимо не реже, чем раз в полгода производить зарядку аккумулятора.

3.3 Правила замены встроенного аккумулятора

Замену встроенного аккумулятора следует проводить в следующей последовательности:

а) Отключить USB-кабель от разъема «USB», расположенного на панели датчика.

b) Открутить четыре винта на верхней панели датчика, и аккуратно отодвинуть в сторону верхнюю панель, стараясь не оторвать прикрепленные к ней провода.

с) Снять аккумуляторную батарею, закрепленную на плате управления питанием.

d) Установить новую аккумуляторную батарею на плату управления питанием, соблюдая полярность.

е) Закрутить четыре винта на верхней панели датчика.

<u>Внимание!</u> Замена аккумуляторной батареи не является гарантийным случаем и осуществляется пользователем самостоятельно.

3.4 Установка ПО на компьютер

Для установки программного обеспечения ZETLAB на компьютер необходимо:

а) Установить USB-флэш накопитель (из комплекта поставки) с ПО в USB-порт компьютера;

b) Запустить установочный файл «ZETLab.msi» и следуя указаниям произвести установку программного обеспечения ZETLAB на компьютер.

<u>Внимание!</u> Для установки ПО вход в ОС Windows должен быть произведен с правами администратора.

<u>Примечание:</u> для корректной работы программного обеспечения ZETLAB компьютер должен удовлетворять следующим требованиям:

- двухъядерный процессор или более;
- тактовая частота процессора не менее 1,6 ГГц;
- оперативная память не менее 4 Гб;
- свободное место на жестком диске не менее 20 Гб;
- видеокарта с 3D-графическим ускорителем, поддержкой OpenGL, DirectX;
- разрешение экрана не менее 1280×1024;
- наличие манипулятора «мышь» или иного указательного устройства;
- наличие стандартной клавиатуры или иного устройства ввода;
- допустимые версии ОС:
 - о Microsoft® Windows® 10 32/64 разрядная.

3.5 Подключение датчика к компьютеру

Для подключения датчика к компьютеру необходимо соединить кабелем USB, входящим в комплект поставки, разъем «USB» датчика и любой незадействованный USBпорт компьютера.

На компьютере должна быть установлена операционная система Windows 10, а также установлено и запущено программное обеспечение ZETLAB. Необходимо также подключить к USB разъему компьютера электронный ключ ZETKEY, входящий в комплект поставки.

После подключения датчика к компьютеру операционная система Windows обнаружит новый съемный диск и универсальный последовательный порт (СОМ-порт).

Примечание: при глубоком разряде аккумулятора датчика возможны сбои при 🖺 подключении к компьютеру по интерфейсу USB. Стабильность подключения датчика восстановится по мере заряда аккумулятора.

Конфигурирование датчика производится в программе «Диспетчер устройств», которая располагается в меню «Сервисные» на панели ZETLAB (*Puc. 3.1*).

Так как датчик включает в свой состав виброметр ZET 7052-N, то в окне программы «Диспетчер устройств ZET» будет отображаться идентификатор виброметра ZET 7052-N. Для конфигурирования датчика необходимо двойным кликом левой кнопкой мыши по идентификатору виброметра зайти в меню «Свойства».

3.6 Конфигурирование датчика

3.6.1 Конфигурирование интерфейсной части

Конфигурирование интерфейсной части приведено в документе «Конфигурирование интерфейсной части интеллектуальных модулей серии ZET7xxx».

Примечание: иифровые датчики ZET 7052-N состоят из трёх каналов (по **I** умолчанию они имеют названия: «Ось Х», «Ось Ү», «Ось Z»), соответствующие трем измерительным осям.

3.6.2 Назначение и состав вкладок для конфигурирования измерительной части

Описание вкладок «Общие», «Информация» и «RS-485» приведены в документе «Конфигурирование интерфейсной части интеллектуальных модулей серии ZET7xxx».

3.6.3 Вкладки «Ось Х», «Ось Ү» и «Ось Z»

Цифровой датчик состоит из трех каналов (по умолчанию они имеют названия: «ZET7052N_X», «ZET7052N_Y», «ZET7052N_Z»).

Изменения параметров цифрового датчика возможно вносить только во в вкладках канала ZET7052N_X. При изменении параметров канала ZET7052N_X, система автоматически вносит соответствующие изменения также для каналов Y и Z.

В меню «Свойства» цифрового датчика ZET 7052-N представлено три идентичные вкладки с названиями «Ось Х», «Ось Y», «Ось Z» для каждого из трех измерительных каналов. Каждая из вкладок несет информацию по выбранному измерительному каналу.

На Рис. 3.2 приведен пример вкладки «Ось Х», а в Табл. 3.1 - информация о параметрах.

Свойства: 7052	2N_X (02)					×
Сейсмика	Калибровка	Заводски	e	Само	контроль	Метрология
Общие	Информация	Ось Х	Oc	ьΥ	Ось Z	Настройки
Параметры измерения						
Текущее из	меренное значени	ие, ед. изм.:		-0.007	743615	
Частота об	новления данных,	Гц:		100		
Единица из	мерения:			m/s^	2	
Наименова	ние оси Х:			70521	N_X	
Минимальн	юе значение (в ед	. изм.):		-78.448		
Максималь	ное значение, ед.	изм.:		78.448		
Опорное зн	ачение для расчё	та, дБ:		0		
Чувствител	ьность, В/ед.изм.:	:		0		
Порог чувст	твительности, ед. 1	изм.:		3.9e-0	06	
				Пр	именить	Отменить

Рис. 3.2 Вкладка «Ось Х»

Табл. 3.1 Параметры вкладок «Ось Х», «Ось Ү», «Ось Z»

Параметр	Возможность	Допустимые значения	Описание
Текущее измеренное значение, ед. изм.		В пределах диапазона измерений	Отображает измеренное цифровым датчиком значение по данному каналу, зафиксированное на момент открытия вкладки.
Частота обновления данных, Гц	-	-	Соответствует текущей частоте обновления данных по каналу.
Единица измерения	_	g m/s^2	Соответствует текущей единице измерений. Зависит от значения, установленного для параметра «Единица измерения» во вкладке «Настройки».
Наименован ие датчика	-	Любая последовательн ость символов (не более 32)	Для первого канала назначается имя с символом «Х», для второго - «Ү», для третьего – «Z».
Минимальн ое значение ед. изм.	_	_	В ячейке отображается минимально возможное значение, которое может быть измерено цифровым датчиком по данному каналу. Параметр зависит от измеряемой физической величины.
Максимальн ое значение ед. изм.	_	_	В ячейке отображается максимально возможное значение, которое может быть измерено цифровым датчиком по данному. Параметр зависит от измеряемой физической величины.
Опорное значение для расчета, дБ	_	_	Отображается опорное значение необходимое для пересчета измеренного значения в дБ.
Чувствитель ность, В/ед. изм.	_	_	Отображается значение чувствительности (для ZET 7052-N параметр не актуален)
Порог чувствитель ности ед. изм.	_	_	Параметр указывает на минимальное возможное регистрируемое значение.

3.6.4 Вкладка «Настройки»

На Рис. 3.3 приведен пример вкладки «Настройки», а в Табл. 3.2 - информация о параметрах.

Свойства: 705	2N_X (02)					>	<
Сейсмика	Калибровка	Заводски	1e	Само	контроль	Метрология	
Общие	Информация	Ось Х	00	сь Ү	Ось Z	Настройки	
Общие наст	ройки						
Тип цифро	вого датчика:			0			
Частота об	о́новления данных,	Гц:		100		~	
Фильтраци	19:					\sim	
Измеряем	ая физическая вел	ичина:		вибр. ус	скорение	\sim	
Единица из	змерения:			M/C ²		~	
Выдаваем	ое значение:			мгновенное		\sim	
Интервал и	измерения, с:			0		\sim	
Диапазон:				расшир	енный	~	
				Пр	оименить	Отменить]

Рис. 3.3 Вкладка «Настройки»

Параметр	Возможность изменения	Допустимые значения	Описание
Тип цифрового датчика	Нет	230,,	Внутренняя информация о типе первичного преобразователя.
Частота обновления данных, Гц	Дa	50 100 500 1000	Частота, с которой производится аналого-цифровое преобразование регистрируемых сигналов ускорения.
Измеряемая физическая величина	Нет	Вибр. ускорение	Параметрустанавливаетфизическую величину, измеренныезначениякоторойвыдаваться на выходе устройства.
Единица измерений	Дa	д м/с ²	Выбор единицы измерений, выдаваемых цифровым датчиком данных. Используется цифровым датчиком для преобразований измеряемых величин.
Выдаваемое значение	Нет	Мгновенное	Формат выдачи цифровым датчиком измеренных значений линейного ускорения.
Диапазон	Дa	Нормальный Расширенный	Диапазон измерения ускорения ZET 7052-N. Нормальный: ±2 g (20 м/c ²). Расширенный: ±8g (80 м/c ²).

Табл. 3.2 Параметры вкладки «Настройки»

3.6.5 Вкладка «Сейсмика»

На Рис. 3.4 приведен пример вкладки «Сейсмика», а в Табл. 3.3 - информация о параметрах.

Свойства: 7052	N_X (02)					×
Общие	Информация	Ось Х	Ось Ү	Ось Z	Настройки	I
Сейсмика	Калибровка	Заводск	ие Само	контроль	Метрология	
Сейсмическо	е обнаружение					
Порог 1:	0.5				^	•
ФНЧ 1:	10 Гц				~	
ФВЧ 1:	0.5 Гц				\sim	
Ось 1:	Х				\sim	
Вход 1:	сброс в	сех реле			\sim	
Порог 2:	0.5					
ФНЧ 2:	10 Гц				\sim	
ФВЧ 2:	0.5 Гц				\sim	
Ось 2:	Υ				\sim	
Вход 2:	сброс в	всех реле			\sim	
Порог 3:	0.5					
ФНЧ 3:	10 Гц				~	
ФВЧ 3:	0.5 Гц				\sim	
Ось 3:	Z				~ ~	•
			П	рименить	Отменить	

Рис. 3.4 Вкладка «Сейсмика»

Параметр	Возможность	Допустимые	Описание
	изменения	значения	
			Параметры устанавливают пороговыи
Порог І		В пределах	уровень ускорения (м/с ² , g), по
Порог 2	Дa	диапазона	превышению которого будет
Порог 3		измерений	замыкаться соответствующее реле
			датчика (OUT1, OUT2, OUT3).
			Параметры накладывают фильтр
			низких частот на измерительные
ФНЧ 1		ВЫКЛ	каналы датчика (Х, Ү, Ζ), по
ФНЧ 2	Да	10 Гц	показаниям которых будут
ФНЧ 3		40 Гц	срабатывать пороги превышения,
			заданные для параметров «Порог 1»,
			«Порог 2», «Порог 3».
			Параметры накладывают фильтр
ADU 1		ВЫКЛ	высоких частот на измерительные
	п	0,1 Гц	канала датчика (X, Y, Z), по показаниям
ФВЧ 2	Дa	0,5 Гц	которых будут срабатывать пороги
ФВЧ 3		1 Гц	превышения, заданные для параметров
			«Порог 1», «Порог 2», «Порог 3».
			В полях устанавливаются
		ВЫКЛ	измерительные каналы датчика Х, Ү, Ζ,
Ось 1		Х	ХҮΖ (контроль превышения по любой
Ось 2	Да	Y	оси датчика), по показаниям которых
Ось 3		Z	будут срабатывать пороги
		XYZ	превышения, заданные для параметров
			«Порог 1», «Порог 2», «Порог 3».
		ВЫКЛ	Параметр устанавливает действие,
Bron 1		сброс реле 1	которое должно произойти с реле или
	Ла	сброс реле 2	группой реле, при поступлении
Brog 2	Да	сброс реле 3	входного сигнала на соответствующие
влод э		сброс всех реле	контакты (IN1, IN2, IN3) разъема
		устан. всех реле	датчика.

Табл. 3.3 Параметры вкладки «Сейсмика»

4 Установка датчика на объекте испытания

4.1 Общие требования

При монтаже датчика следует выполнять следующие указания:

a) Установку следует производить таким образом, чтобы его измерительная ось Z была направлена по вертикали (допустимое отклонение от вертикали не более трех градусов).

b) Исключить повреждения материалов/оборудования при монтаже.

с) Исключить использование металлической проволоки/провода для скрепления между собой металлоконструкций.

d) При выполнении монтажных работ на все резьбовые соединения, нанести защитную смазку.

4.2 Установка датчика на металлическую поверхность

Установка датчика на плоские вертикальные металлические поверхности выполняется с использованием монтажной пластины размерами 130х100 мм (*Puc. 4.1*).

Рис. 4.1 Чертеж монтажной пластины для установки на металлическую поверхность

Пластина фиксируется на металлической поверхности конструкции при помощи четырех магнитов, закрепленных к основанию пластины. Датчик крепится к монтажной пластине при помощи четырех винтов.

Установка пластины на металлическую поверхность сооружения выполняется в следующем порядке:

- Обезжирить поверхность элемента конструкции в области контакта магнитов;
- Нанести на контактируемые области поверхности сооружения и магнитов эмаль АкЧ-1711-Северон Prof (либо аналог), выполняющую функцию клея с целью предотвращения смещения пластины в период эксплуатации;
- Установить пластину на поверхность элемента конструкции.

Крепление датчика к шпилькам пластины установочной, выполняется с помощью четырех гаек и шайб (*Puc. 4.2*).

Рис. 4.2 Крепление датчика на вертикальную поверхность

<u>Примечание:</u> при установке датчика следует руководствоваться направлением измерительных осей, приведенных на его корпусе.

4.3 Установка датчика на бетонную поверхность

Установка датчика на горизонтальную бетонную поверхность осуществляется при помощи пластины установочной размерами 160х200мм (*Puc. 4.3*).

Рис. 4.3 Чертеж монтажной пластины для установки на бетонную поверхность

Пластина установочная фиксируется на бетонной поверхности при помощи четырех анкерных болтов. Крепление датчика к пластине производится через четыре отверстия в основании устройства в соответствии с *Puc. 4.4*.

Рис. 4.4 Пример крепления датчика на бетонную поверхность

При необходимости надеть на датчик защитный кожух, зафиксировав его четырьмя винтами на боковых гранях пластины установочной.

4.4 Установка датчика на цилиндрическую поверхность (трубу)

Установка датчика на трубу выполняется с использованием монтажного комплекта (включающего четыре уголка и элементы крепления) и двух хомутов (*Puc. 4.5*).

Рис. 4.5 Схема установки датчика на трубу

Уголки из монтажного комплекта фиксируются при помощи винтов на основание датчика на этапе подготовки к установке.

Фиксация датчика на трубе производится с помощью двух хомутов, при этом необходимо обеспечить силу затягивании болтовых соединений в диапазоне 5...7 Н/м.

5 Работа с датчиком

5.1 Запись сигналов на внутреннею память датчика

Проведение измерений с записью на внутреннею память датчика выполняется в следующем порядке:

- 1. Установить датчик на место проведения испытаний для регистрации сигналов ускорения.
- Начать запись, нажав и удерживая кнопку на верхней панели датчика до появления на дисплее надписи «REC START». После чего на внутреннею память датчика будет производиться запись сигналов ускорения.
- По окончанию регистрации сигналов следует остановить запись, нажав и удерживая кнопку на верхней панели датчика до появления на дисплее надписи «REC STOP».
- При необходимости произвести дальнейшую регистрацию сигналов необходимо повторить пункты 1-3 данного раздела.
- По завершению проведения серии регистрации сигналов ускорения необходимо перенести записанные сигналы из внутренней памяти датчика на диск компьютера (см. раздел 5.2).

5.2 Копирование записанных сигналов на диск компьютера

Копирование записанных сигналов производится через интерфейс USB следующим образом:

- На компьютере должно быть запущено программное обеспечение ZETLAB. Необходимо также подключить к USB разъему компьютера электронный ключ ZETKEY, поставляемый в комплекте с системой.
- Выполнить подключение датчика к компьютеру для переноса записанных сигналов с внутренней памяти на компьютер. Для этого необходимо подключить USB- кабель к разъему «USB», который расположен на верхней панели датчика.
- На компьютере автоматически запустится программа «Выбор файлов для конвертации с диска». Данная программа предназначена для копирования и конвертации файлов с внутренней памяти датчика на компьютер в формате ПО «ZETTrends» (Рис. 5.1).

Выбор файлов для конвертации К:\\ZET_DATA\				
	Конвертировать файлы в интервале от 02.08.2017 15:27:56 до 01.01.2050 03:05:50 ▼			
Конвертировать только новые файлы Общий размер новых файлов диске 943,5 Мб				
	Конвертировать все файлы на диске Общий размер всех файлов диске 943,5 Мб			
🔲 c nepe	едискретизацией Применить Отмена			

Рис. 5.1 Программа конвертации файлов

- 4. В программе «Выбор файлов для конвертации с диска» следует выбрать один из предложенных программой вариантов конвертации файлов и нажать кнопку «Применить».
- 5. Запустится процесс конвертация файлов, состояние которого можно отслеживать в программе «Преобразователь файлов» (Рис. 5.2).

📱 Преобразователь файлов 📃 🔀				
Общий прогресс преобразования				
12.85 %				
Прогресс преобразования текущего файла				
K:\\ZET_DATA\SL000041.ZDT: 12.85 %				

Рис. 5.2 Программа «Преобразователь файлов»

6. По окончанию преобразования файлов появится окно (Рис. 5.3) с предложением запуска программы «ZETTrends» для просмотра записанных сигналов.

Рис. 5.3 Окно с предложением запуска «ZETTrends»

 В случае нажатия кнопки «ОК» откроется окно программы «Просмотр трендов» (Рис. 5.4), предназначенной для анализа записанных сигналов.

Рис. 5.4 Программа «Просмотр трендов»

- 8. Для отображения сигнала в программе «Просмотр трендов» по конкретному измерительному каналу необходимо выделить его в соответствующей ячейке.
- 9. Также существует возможность, в любое удобное время, самостоятельно запустить ПО «ZETTrends» из меню «Регистрация» панели ZETLAB (Рис. 3.1).

<u>Примечание:</u> за более подробной информацией о работе с ПО «ZETTrends» следует обратиться к документу «Руководство оператора ZETTrends».

 Записанные сигналы сохраняются в директорию, указанную в программе «Пути конфигурации пользователя». Программа «Пути конфигурации пользователя» расположена в главном меню панели ZETLAB (Рис. 5.5).

Управление проектами ZETLAB	Недавно открытые проекты
Открыть проект	
Сохранить проект как	
Дополнительно	
Пути конфигурации пользова	
Посетить сайт программы	
О программе	
Сохранять конфигурацию	
интеллектуальных датчиков	
ГІОКАЗЫВАТЬ ОШИОКИ	
	📝 Проверять наличие обновлений бета
Завершение работы	Проверить наличие обновлений
Закрыть все программы	Очистить конфигурацию
Выход из программы	Сервисная работа с ZET7хх
Язык Language Idioma:	Русский (Россия)

Рис. 5.5 Главное меню панели ZETLAB

11. Открыть программу «Пути конфигурации пользователя» (Рис. 5.6) нажатием по соответствующей иконке в главном меню панели ZETLAB.

Настройка путей конфигурации		×
Пути конфигурации Выбра		
Сигналы	D:\signals\	
Сжатые сигналы	D:\compressed\	
Результаты обработки	D:\result\	
Файлы конфигурации	C:\ZETLab\config\	
Пользовательские поправки	C:\ProgramData\ZETLab\correct\	
Файлы справки	C:\ZETLab\hlp\	
Корневая директория ZETLAB	C:\ZETLab\	
Директория ZETView	C:\ZETLab\SCADA\	
Справка ZetView С:\ZETLab\SCADA\HELP\		
	Применить Отмени	ить

Рис. 5.6 Программа «Пути конфигурации пользователя»

12. В открывшемся окне программы «Пути конфигурации пользователя» нажать на иконку «Сигналы» (Рис. 5.7).

Рис. 5.7 Иконка для перехода к директории записанных сигналов

13. Откроется соответствующая папка «signals», где записанные сигналы отсортированы по времени проведения записи, и имеет следующую структуру «…\signals\rod\mecяц\день\час». Пример приведен на *Puc. 5.8*

D:\signals\2017\12\11\16

Рис. 5.8 Пример директории записанных сигналов

6 Техническое обслуживание

Регулярные работы по техническому обслуживанию датчика не являются обязательными, но при этом, в качестве превентивной меры, рекомендуется производить регулярный визуальный осмотр оборудования.

При возникновении сбоя в работе оборудования, рекомендуется проверить все соединения датчика на предмет короткого замыкания или разрыва. Если причину сбоя в работе оборудования выявить не удается, датчик необходимо направить Компании ZETLAB на ремонт.

В случае возникновения вопросов по эксплуатации или характеристикам датчика следует обращаться в службу технической поддержки Компании ZETLAB по электронной почте <u>info@zetlab.com</u>.

7 Правила хранения и транспортирования

Рекомендуемые условия хранения датчика в комплекте упаковки в отапливаемом помещении при температуре от 5 до 40 °C и влажности воздуха до 80 % согласно ГОСТ 22261.

В помещении, где хранится датчик, не должно быть паров кислот, щелочей или других химически активных веществ, пары или газы которых могут вызвать коррозию.

При погрузке и разгрузке упаковки с датчиком должны строго выполняться требования манипуляционных знаков и надписей на упаковках.

Размещение и крепление упаковки с датчиком в транспортных средствах должно обеспечивать устойчивое ее положение и не допускать перемещения во время транспортирования.

Климатические условия транспортирования:

- Температура окружающей среды от минус 35 до плюс 60 °С;
- Относительная влажность до 98 % при температуре плюс 25 °C;
- Атмосферное давление от 84 до 107 кПа (от 630 до 800 мм рт.ст.).

При транспортировании должна быть обеспечена защита упаковки с датчиком от непосредственного воздействия атмосферных осадков и солнечного излучения.

Датчик в упаковке может транспортироваться в соответствии с требованиями ГОСТ 21552-84:

- Автомобильным транспортом на расстояние до 1000 км со скоростью не более 60 км/ч по шоссейным дорогам с твердым покрытием и до 500 км со скоростью до 20 км/ч по грунтовым дорогам;
- Железнодорожным транспортом на расстояние до 10000 км со скоростью в соответствии с нормами Министерства путей сообщения, при расположении датчика в любой части состава;
- Воздушным транспортом на любое расстояние, с любой скоростью в герметичном отсеке.

Приложение А. Пример применения УСПД ZET 7000 mod. 8352-DP в составе системы сейсмического обнаружения для лифтов категории 3

Структурная схема работы датчика сейсмических толчков в составе системы сейсмического обнаружения для лифтов категории 3 представлена на Рис. А1.

Рис. А1 Структурная схема работы датчика сейсмических толчков в составе системы сейсмического обнаружения для лифтов категории 3

Система сейсмического обнаружения (далее по тексту – ССО) обеспечивает регистрацию ускорений по трем измерительным осям цифрового акселерометра ZET7052-N, входящего в состав датчика сейсмических толчков, установленного в месте регистрации сейсмического воздействия и формирование трех сигналов – «0,15 м/с²»; «1 м/с²»; «Тест». Формируемые ССО сигналы с контактов реле передаются через контакты ОUT1, OUT2, OUT3 разъема датчика и имеют тип «Сухой контакт».

<u>Примечание:</u> Контроль уровня и формирование сигнала «0,15 м/с²» производится только для вертикальной измерительной оси (ось Z) цифрового акселерометра ZET 7052-N, входящего в состав датчика сейсмических толчков.

<u>Примечание:</u> Контроль уровня и формирование сигнала «1 м/с²» производится по всем измерительным осям акселерометра, при этом для формирования сигнала «1 м/с²» достаточно превышения регистрируемого уровня по любому из измерительных каналов цифрового акселерометра ZET 7052-N, входящего в состав датчика сейсмических толчков. После регистрации ССО превышения уровней, каждый из сформированных сигналов $\ll 0,15 \text{ м/c}^2 \gg u \ll 1 \text{ м/c}^2 \gg 6$ удет удерживаться до тех пор, пока по цепям IN1, IN2 разъема датчика не будут получены соответствующие сигналы.

В случае детектирования превышения порогового уровня ускорения для первичной волны по сигналу с измерительной оси Z датчика сейсмических толчков, на контактах «OUT1» разъема датчика формируется сигнал « $0,15 \text{ м/c}^2$ » к системе управления лифта. Для сброса сигнала « $0,15 \text{ м/c}^2$ » необходимо на контакты «IN1» разъема датчика подать управляющий сигнал «сброс $0,15 \text{ м/c}^2$ ».

В случае детектирования превышения порогового уровня ускорения, хотя бы по одному из измерительных каналов (X, Y, Z) датчика сейсмических толчков, на контактах «OUT2» разъема датчика формируется сигнал «1 м/с²» к системе управления лифта. Для сброса сигнала «1 м/с²» необходимо на контакты «IN2» разъема датчика подать управляющий сигнал «сброс_1 м/с²».

Время реакции ССО с момента прихода сейсмического воздействия, превышающего пороговый уровень, до формирования сигналов к системе управления лифтом не более трех секунд.

Зарегистрированные с измерительных каналов цифрового акселерометра ZET7052-N, входящего в состав датчика сейсмических толчков, сигналы в цифровом формате передаются для хранения в память устройства на SD-карту.