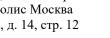
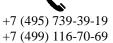
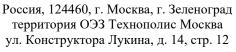
ВИБРОМЕТР ИНТЕЛЛЕКТУАЛЬНЫЙ ЦИФРОВОЙ ZET 139 USB


РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

ЭТМС.402210.001-139 РЭ


СОДЕРЖАНИЕ

1 НАЗНАЧЕНИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	3
2 КОМПЛЕКТНОСТЬ	5
3 ВНЕШНИЙ ВИД	6
4 ПОДГОТОВКА К РАБОТЕ	7
5 РАБОТА С ВИБРОПРЕОБРАЗОВАТЕЛЕМ	13
6 УСТАНОВКА ВИБРОПРЕОБРАЗОВАТЕЛЯ И ВАРИАНТЫ КРЕПЛЕНИЯ	20
ПРИЛОЖЕНИЕ А. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	21
ПРИЛОЖЕНИЕ Б. КАРТА РЕГИСТРОВ	23
ПРИЛОЖЕНИЕ В. РЕЖИМЫ РАБОТЫ СВЕТОДИОДНОЙ ИНДИКАЦИИ	25
ПРИЛОЖЕНИЕ Г. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ	26



НАЗНАЧЕНИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ 1

1.1 Назначение вибропреобразователя

Виброметр интеллектуальный цифровой ZET 139 (вибропреобразователь) предназначен для измерения и преобразования ускорения, действующего на корпус устройства, в цифровой сигнал и дальнейшей передачи измеренных значений в цифровом виде. Вибропреобразователь представляет собой вибродатчик со встроенным трехосевым чувствительным элементом, осуществляющим преобразование постоянной составляющей ускорения в цифровой код по трем взаимно перпендикулярным осям X, Y и Z.

Вибропреобразователь ZET 139 применяется для непрерывного контроля состояния промышленного оборудования и выявления преждевременных неисправностей, таких как ранний выход из строя подшипника, дисбаланс, несоосность и другие.

Вибропреобразователь ZET 139 легко устанавливается на объект испытаний, не требуя подключения внешних первичных преобразователей. Компактное исполнение вибропреобразователя позволяет осуществлять контроль вибрации оборудования в наиболее труднодоступных точках.

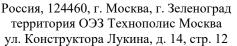
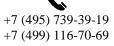

Модификации вибропреобразователя ZET 139 приведены в Табл. 1.1.

Табл. 1.1 Модификации вибропреобразователя ZET 139


М одификация Диапазон	ZET 139A ZET 139G	ZET 139B ZET 139H	ZET 139C ZET 139I
Диапазон измерения мгновенного значения ускорения ¹	$\pm 72 \text{ m/c}^2$	±144 м/с ²	$\pm 360~\mathrm{m/c^2}$
Диапазон измерения СКЗ виброускорения ²	от $0,1$ до 50 м/c^2	от 0,1 до 100 м/ c^2	от 0,1 до 250 м/ c^2
Диапазон измерения СКЗ виброскорости ³	от 0,1 до 40 мм/с	от 0,4 до 80 мм/с	от 0,1 до 200 мм/с
Диапазон измерения СКЗ виброперемещения ⁴	от 0,003 до 1 мм	от 0,004 до 2 мм	от 0,003 до 5 мм

⁴ Диапазон измерения СКЗ виброперемещения по трем взаимно перпендикулярным осям X, Y и Z на базовой частоте 20 Гц.

¹ Диапазон измерения мгновенных значений ускорения по трем взаимно перпендикулярным осям X, Y и Z на базовой частоте 160 Гц.

² Диапазон измерения СКЗ виброускорения по трем взаимно перпендикулярным осям X, Y и Z на базовой частоте 160 Ги.

³ Диапазон измерения СКЗ виброскорости по трем взаимно перпендикулярным осям X, Y и Z на базовой частоте 20 Гц.

Вибропреобразователь ZET 139 обеспечивает измерение и обработку следующих вибрационных характеристик:

- Линейное ускорение;
- СКЗ виброускорения;
- СКЗ виброскорости;
- СКЗ виброперемещения;
- Размах виброускорения;
- Размах виброперемещения;
- Размах виброскорости;
- Пик-фактор виброускорения;
- Пик-фактор виброскорости;
- Пик-фактор виброперемещения;
- Куртозис;
- Пиковое значение ускорения, скорости и перемещения;
- Модуль вектора виброускорения;
- Модуль вектора виброскорости;
- Модуль вектора виброперемещения;
- Фаза пикового вектора виброскорости:
- Температура.

1.2 Условия эксплуатации

Вибропреобразователь ZET 139 имеет промышленное исполнение и предназначен для эксплуатации в жестких условиях, что позволяет применять в неблагоприятных условиях окружающей среды, выдерживая большие механические нагрузки и вибрации.

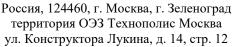
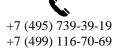
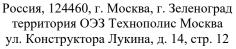

Условия эксплуатации ZET 139 представлены в Табл. 1.2.

Табл. 1.2 Условия эксплуатации ZET 139


Параметр	Значение
Температура окружающего воздуха, °С	-4070
Относительная влажность воздуха, %	Не более 98 ⁵
Атмосферное давление, мм. рт. ст.	495-800

⁵ при температуре воздуха 35 °C.



2 КОМПЛЕКТНОСТЬ

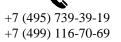

Комплектность поставки вибропреобразователя ZET 139 приведена в Табл. 2.1.

Табл. 2.1 Комплектность поставки ZET 139

№	Наименование	Кол-во	Примечание
1	Виброметр интеллектуальный цифровой ZET 139	1 шт.	
2	Монтажная площадка под винт	1 шт.	
3	Винт для крепления площадки M5×10	1 шт.	
4	Винт для крепления датчика к площадке M3×14	4 шт.	
5	Руководство по эксплуатации	1 шт.	
6	Паспорт	1 шт.	

3 ВНЕШНИЙ ВИД

3.1 Внешний вид вибропреобразователя

Ha Рис. 3.1 вибропреобразователя **ZET** 139. представлен внешний вид Вибропреобразователь оснащается несъемным соединительным USB-кабелем ДЛЯ подключения датчика к компьютеру.

Рис. 3.1 Внешний вид вибропреобразователя ZET 139

3.2 Габаритный чертеж вибропреобразователя

На Рис. 3.2 представлен габаритный чертеж вибропреобразователя ZET 139.

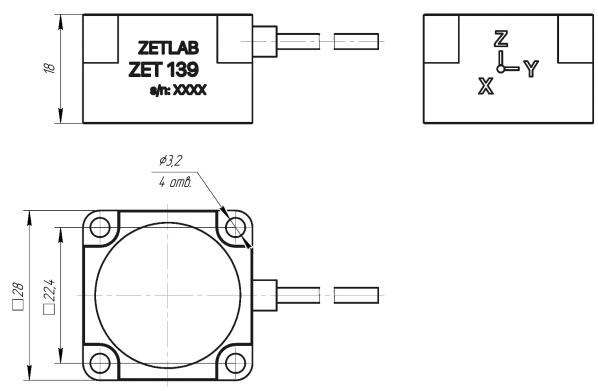
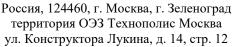
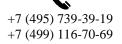




Рис. 3.2 Габаритный чертеж вибропреобразователя ZET 139

4 ПОДГОТОВКА К РАБОТЕ

4.1 Распаковывание

В случае транспортирования при отрицательной температуре, вибропреобразователь ZET 139 в упаковке необходимо выдержать в помещении при нормальных климатических условиях не менее 8 ч.

При распаковывании произвести внешний осмотр датчика, обратив внимание на отсутствие механических повреждений, а также проверить наличие эксплуатационной документации на устройство.

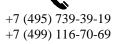
4.2 Меры безопасности

К работе с модулем допускаются лица, изучившие данное руководство.

При работе и ежедневном обслуживании модуля необходимо соблюдать требования техники безопасности и следующие меры предосторожности:

- По окончании работы отключить модуль от источника питания;
- Категорически запрещается работа с модулем, имеющими механические повреждения;

4.3 Требования к компьютеру


Программное обеспечение ZETLAB предназначено для использования на персональных компьютерах типа IBM PC Intel® Pentium®/Celeron®/ или совместимые с ними, работающих под управлением русскоязычной (локализованной), либо корректно русифицированной версии операционных систем:

- Microsoft® Windows® 7 32 разрядная с пакетом обновления SP1.
- Microsoft® Windows® 7 64 разрядная с пакетом обновления SP1.
- Microsoft® Windows® 8 32 разрядная.
- Microsoft® Windows® 8 64 разрядная.
- Microsoft® Windows® 8.1 32 разрядная.
- Microsoft® Windows® 8.1 64 разрядная.
- Microsoft® Windows® 10 32 разрядная.
- Microsoft® Windows® 10 64 разрядная.

Рекомендуемые параметры конфигурация компьютера для установки и запуска программного обеспечения *ZETLAB* и драйверов устройств:

- Двухъядерный процессор или более;
- Тактовая частота процессора не менее 1,6 ГГц;
- Оперативная память не менее 8 Гб;
- Свободное место на жестком диске не менее 20 Гб;
- Видеокарта с 3D-графическим ускорителем, поддержкой OpenGL, DirectX, не менее 1 Гб памяти;
 - Разрешение экрана не менее 1600×900;
 - Наличие манипулятора «мышь» или иного указательного устройства;
- Наличие стандартной клавиатуры или иного устройства ввода (сенсорный экран, графический планшет);
 - Интерфейс USB 2.0 для установки программного обеспечения.

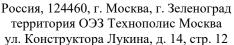
4.4 Установка программного обеспечения ZETLAB

Для установки программного обеспечения ZETLAB необходимо на компьютере запустить файл-установщик ZETLAB.msi (поставляется на USB флеш-накопителе) и следуя инструкциям установить $\Pi O ZETLAB$ в директорию $C:\ZETLab$.

4.5 Запуск панели управления ZETLAB

Для запуска панели управления ZETLAB необходимо активировать «ярлык» ZETLAB (Puc. 4.1), расположенный на рабочем столе OC Windows.

Рис. 4.1 Внешний вид «иконки» ZETLAB


В верхней части экрана откроется панель управления ZETLAB (Puc. 4.2).


Панель управления *ZETLAB* разбита на разделы. Для выбора программы следует активировать название соответствующего раздела панели управления *ZETLAB* и из развернувшегося списка выбрать необходимую программу.

Для работы с программами, входящими в состав ПО ZETLAB, необходимо вставить в любой незадействованный USB-порт компьютера аппаратный ключ ZETKey с соответствующей программной лицензией.

4.6 Получение справочной информации

В любой момент работы с программным обеспечением *ZETLAB* можно воспользоваться справочной информацией по работе с ним. Для доступа к справочной информации (находясь в окне той из программ, по которой необходимо получить справочную информацию) следует активировать на клавиатуре клавишу <F1>.

4.7 Настройка пользовательских директорий

Программному обеспечению *ZETLAB* требуется для работы несколько директорий на диске компьютера, при этом часть из директорий определяются программным обеспечением и не могут быть изменены пользователем, а часть из директорий доступны для изменения.

Для изменения доступны директории, в которых будут располагаться сигналы, сжатые сигналы, результаты обработки и файлы конфигурации.

Для определения пользовательских директорий на диске компьютера следует создать (в случае отсутствия необходимых) пользовательские директории, после чего в программном обеспечении настроить пути конфигурации к ним.

Для настройки путей конфигурации, в «Панели управления *ZETLAB»* (*Puc. 4.2*) необходимо активировать раздел с логотипом «*ZETLAB»* (на панели слева) и в открывшемся окне «Главное меню панели управления» (*Puc. 4.3*) активировать панель «Пути конфигурации пользователя».

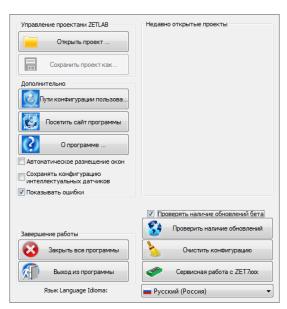
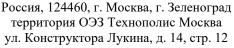



Рис. 4.3 Главное меню панели управления ZETLAB

В открывшемся окне «Настройка путей конфигурации» (*Puc. 4.4*) для каждой определяемой пользователем директории последовательно активировать панель «——»,

соответствующую виду сохраняемых данных (сигналы, сжатые сигналы, результаты обработки, файлы конфигурации) и в открывшемся окне «Выбор директории» назначить требуемый путь конфигурации, после чего активировать «Применить».

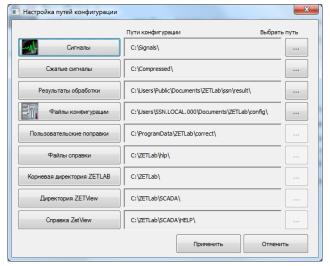
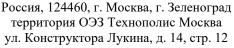


Рис. 4.4 Окно «Настройка путей конфигурации»

4.8 Индикатор состояния подключенных устройств

Индикатор состояния подключенных устройств расположен справа на панели *ZETLAB*.

В зависимости от результатов непрерывной диагностики состояния подключенных аппаратных средств производства ООО «ЭТМС» индикатор может находиться в одном из трех состояний индикации:



Индикатор находится в состоянии *Штатный режим* в случае, если программное обеспечение не диагностирует каких-либо нарушений в работе аппаратных средств и конфигурирования настроек программного обеспечения.

В случаях, когда программное обеспечение диагностирует некритичные нарушения в работе одного или несколько устройств либо конфигурации настроек, индикатор переводится в состояние «Предупреждение», а в случаях критичных нарушений – в состояние «Ошибка».

Для перехода к информации о причинах диагностируемых нарушений необходимо активировать панель с символом индикатора состояние подключенных устройств, при этом

откроется соответствующее окно с описанием вида зарегистрированной ошибки (Рис. 4.5).

Внимание! Прежде чем продолжить работу с программным обеспечением ZETLAB следует принять меры по устранению причин, приводящих к диагностируемой ошибке.

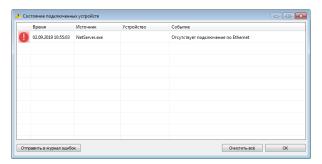


Рис. 4.5 Окно «Состояние подключенных устройств»

Для получения дополнительной информации вызовите правой кнопкой манипулятора «мышь» панель меню ($Puc.\ 4.6$) и активируйте строку «Помощь».

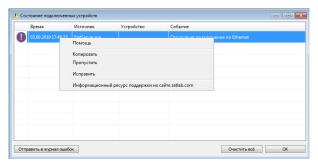


Рис. 4.6 Окно «Состояние подключенных устройств» с панелью меню

В открывшемся справочном окне (*Puc. 4.7*) воспользуйтесь информацией о необходимых мерах по устранению диагностируемой ошибки.

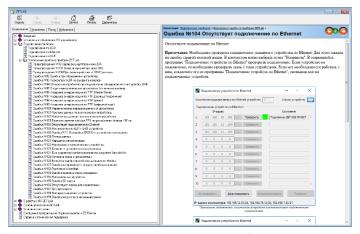
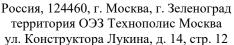
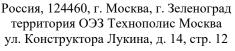




Рис. 4.7 Окно справочной информации

Если причина диагностированного нарушения была связана с периодом настройки или с этапом подключения аппаратуры и в настоящий момент уже устранена, то после активации


кнопки «Очистить все» в окне «Состояние подключенных устройств» (*Puc. 4.5*) индикатор состояния подключенных устройств перейдет в состояние «*Штатный режим»* (отсутствие ошибок). Если причина возникновения ошибки не была устранена индикатор состояния подключенных устройств вновь начнет индицировать состояние «*Ошибка*».

4.9 Закрытие программ ZETLAB


Для закрытия сразу всех программ, запущенных с помощью панели ZETLAB необходимо в окне «Главное меню панели управления» ($Puc.\ 4.3$) активировать кнопку « $3aкрыть\ все$ программы» при этом сама панель ZETLAB остается активной.

4.10 Закрытие панели ZETLAB

Для закрытия панели управления *ZETLAB* необходимо в окне «Главное меню панели управления» (*Puc. 4.3*) активировать кнопку *«Выход из программы»* при этом происходит закрытие как самой панели управления *ZETLAB*, так и всех запущенных программ ZETLAB.

5 РАБОТА С ВИБРОПРЕОБРАЗОВАТЕЛЕМ

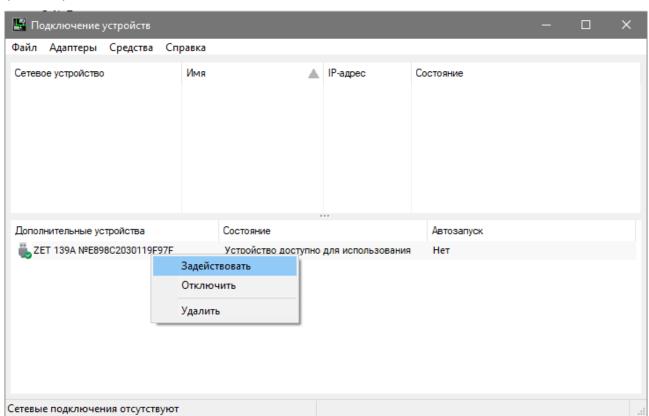
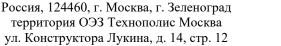
На компьютере, на котором будут производиться работы с вибропреобразователем ZET 139, должна быть установлена операционная система Windows, а также установлено и запущено программное обеспечение ZETLAB.

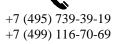
5.1 Подключение вибропреобразователя к компьютеру

Перед началом работы подключить вибропреобразователь ZET 139 к компьютеру по интерфейсу USB.

Запустить панель управления ZETLAB, активировав «ярлык» ZETLAB, расположенный на рабочем столе ОС Windows.

Из меню «Сетевые программы» панели ZETLAB активировать программу «Подключение устройств». В открывшемся окне в поле «Дополнительные устройства» отобразится вибропреобразователь ZET 139. Нажатием правой клавиши мыши по наименование модуля вызвать контекстное меню и выполнить команду «Задействовать» (*Puc. 5.1*).


Рис. 5.1 Окно программы «Подключение устройств по Ethernet»

Дождаться окончания процесса инициализации подключения, после чего закрыть окно программы «Подключение устройств по Ethernet».

5.2 Настройка параметров вибропреобразователя

Из меню «Сервисные» панели ZETLAB активировать программу «Диспетчер устройств». (*Puc. 5.2*).

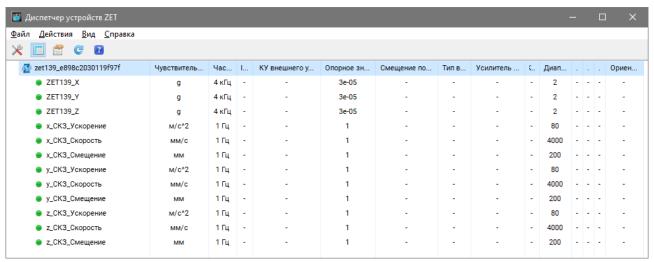
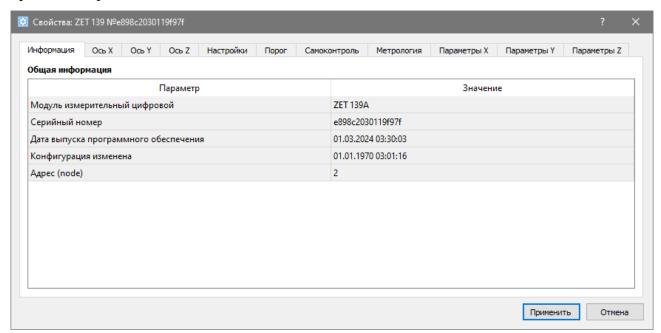
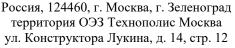
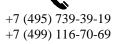
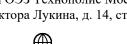


Рис. 5.2 Окно программы «Диспетчер устройств»

Двойным кликом левой клавиши мыши по наименованию вибропреобразователя ZET 139 зайти в меню свойства устройства (*Puc. 5.3*). Открывшееся окно «Свойства ZET 139» состоит из нескольких вкладок, информация о параметрах, содержащихся в каждой из вкладок приведена в разделах 5.2.1-5.2.3.


Рис. 5.3 Окно «Свойства ZET 139»



zetlab.com

5.2.1 Вкладка «Информация»

На Рис. 5.4 приведен пример вкладки «Информация», а в Табл. 5.1 - информация о параметрах.

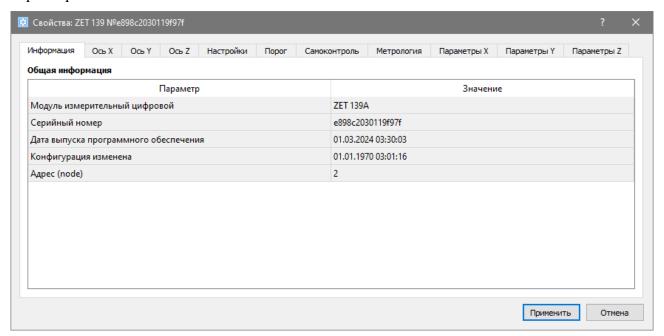
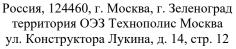
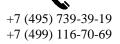



Рис. 5.4 Вкладка «Информация»


Табл. 5.1 Параметры вкладки «Информация»

Параметр	Возможность изменения	Допустимые значения	Описание
Модуль измерительный цифровой	_	ZET 139	Данный параметр отображает наименование устройства.
Серийный номер	_	_	Данный параметр отображает серийный номер устройства, присваиваемый на этапе изготовления.
Дата выпуска программного обеспечения	-	-	Указывается дата выпуска текущей версии программного обеспечения датчика.
Конфигурация изменена	_	-	Указывается дата внесения последних изменений в конфигурацию датчика.
Адрес (node)	_	263	Адрес измерительного канала датчика.

5.2.2 Вкладки «Ось X», «Ось Y», «Ось Z»

В меню «Свойства» ZET 139 представлено три идентичные вкладки с названиями «Ось X», «Ось Y», «Ось Z» для каждого из трех измерительных каналов. Каждая из вкладок несет информацию по выбранному измерительному каналу.

На Рис. 5.5 приведен пример вкладки «Ось X», а в Табл. 5.2 - информация о параметрах.

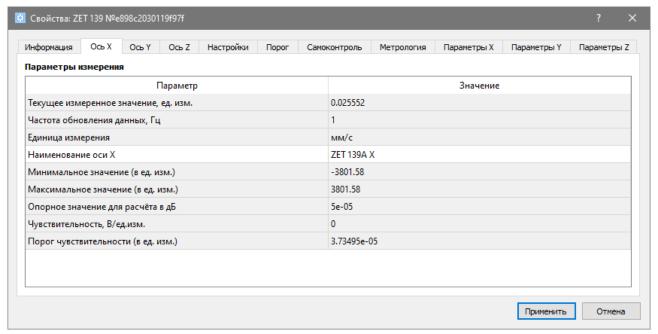
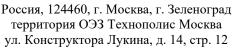
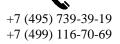
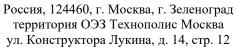
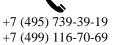



Рис. 5.5 Вкладка «Ось Х»


Табл. 5.2 Параметры вкладок «Ось X», «Ось Y», «Ось Z»

Параметр	Возможность изменения	Допустимые значения	Описание
Текущее измеренное значение, ед. изм.	-	В пределах диапазона измерений	Отображает измеренное вибропреобразователем значение по данному каналу, зафиксированное на момент открытия вкладки.
Частота обновления данных, Гц	-	-	Соответствует текущей частоте обновления данных по каналу.
Единица измерения	Ι	g м/c2 мм/с	Соответствует текущей единице измерений. Зависит от значения, установленного для параметра «Единица измерения» во вкладке «Настройки».
Наименован ие оси	Да	Любая последовательн ость символов (не более 32)	Назначается произвольно. Рекомендуется для первого канала назначать имя с символом «Х», для второго - «Y», для третьего – «Z».





1	7	

Параметр	Возможность изменения	Допустимые значения	Описание
Минимальн ое значение ед. изм.		-	В ячейке отображается минимально возможное значение, которое может быть измерено датчиком по данному каналу. Параметр зависит от измеряемой физической величины.
Максимальн ое значение ед. изм.		_	В ячейке отображается максимально возможное значение, которое может быть измерено датчиком по данному. Параметр зависит от измеряемой физической величины.
Опорное значение для расчета, дБ	_	-	Отображается опорное значение необходимое для пересчета измеренного значения в дБ.
Чувствитель ность, В/ед. изм.	_	-	Отображается значение чувствительности.
Порог чувствитель ности ед. изм.	_	_	Параметр указывает на минимальное возможное регистрируемое значение.

5.2.3 Вкладка «Настройки»

На Рис. 5.6 приведен пример вкладки «Настройки», а в Табл. 5.3 - информация о параметрах.

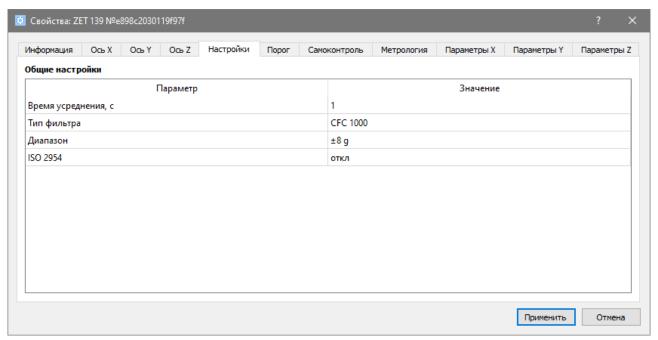
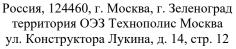
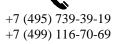



Рис. 5.6 Вкладка «Настройки»


Табл. 5.3 Параметры вкладки «Настройки»

Параметр	Возможность изменения	Допустимые значения	Описание
Время усреднения, с	Да	0,1 1	Выдаваемое датчиком значение, усредненное за установленный период времени.
Тип фильтра	Да	CFC 1000 CFC 600 CFC 180 CFC 60	Фильтр накладывает на сигнал выбранную частотную коррекцию в соответствии с ИСО 6487.
Диапазон	Да	-	Диапазон измерения датчиком линейного ускорения. Допустимые значения параметра зависит от модификации датчика ZET 139 (см. Табл. 1.1).
ISO 2954	Да	откл вкл	Параметр накладывает на сигнал частотную коррекцию ФВЧ в соответствии с ISO 2954.

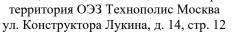
5.3 Конфигурирование вибропреобразователей ZET 139

При конфигурировании вибропреобразователя во вкладках «Ocь X», «Ocь Y» и «Ocь Z» измените название (при необходимости) на удобные вам (например, на ассоциируемое с местом расположения датчика).

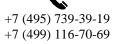
Во вкладке «Настройки» выберите требуемые время усреднения, тип фильтра и диапазон измерения.

После внесения изменений необходимо активировать кнопку «Применить».

5.4 Список основных программ ZETLAB для работы с ZET 139


Для того чтобы произвести регистрацию, анализ и обработку временных реализаций зарегистрированных сигналов следует воспользоваться следующими программами из состава ПО ZETLAB:

- 1. «Вольтметр переменного тока» (панель ZETLAB, раздел «Измерение»);
- 2. «Виброметр» (панель ZETLAB, раздел «Измерение»);
- 3. «Многоканальный осциллограф» (панель ZETLAB, раздел «Отображение»);
- 4. «Универсальный осциллограф» (панель ZETLAB, раздел «Отображение»);
- 5. «Запись сигналов» (панель ZETLAB, раздел «Регистрация»);
- 6. «Воспроизведение сигналов» (панель ZETLAB, раздел «Регистрация»);
- 7. «Просмотр трендов» (панель ZETLAB, раздел «Отображение»);
- 8. «Узкополосный спектр» (панель ZETLAB, раздел «Анализ сигналов»);
- 9. «Взаимный узкополосный спектр» (панель ZETLAB, раздел «Анализ сигналов»).

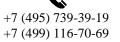

Примечание: для доступа к справочной информации (находясь в окне той из программ, по которой требуется получить справочную информацию) следует активировать на клавиатуре клавишу $\langle FI \rangle$.

6 УСТАНОВКА ВИБРОПРЕОБРАЗОВАТЕЛЯ И ВАРИАНТЫ КРЕПЛЕНИЯ

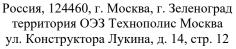
Точки установки вибропреобразователя ZET 139 выбираются исходя из требований соответствующих стандартов для данного класса машин и технологического оборудования. Общие требования к месту установки датчика изложены в ГОСТ ISO 10816-1-97 п.4.2.

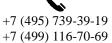
Вибропреобразователь ZET 139 представляет собой вибродатчик со встроенным трехосевым чувствительным элементом, осуществляющим измерение ускорения по трем взаимно перпендикулярным осям X, Y и Z. При установке вибропреобразователя на объект испытаний следует обратить внимание на направления осей вибрации датчика, маркировка которых указана на корпусе вибропреобразователя.

Вибропреобразователь ZET 139 имеет следующие варианты крепления:

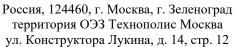

Стандартная комплектация Каждый датчик имеет в комплекте поставки: • монтажная площадка под винт (1 шт.); Площадка под винт для крепления площадки винт (M5×10 - 1 шт.);винты для крепления датчика к площадке (М3×14 - 4 шт.). Размер монтажной площадки (Д×Ш×В): $28 \times 28 \times 5$ MM. Дополнительная комплектация По Заказчика запросу возможна Площадка с комплектация монтажной площадки с магнитом магнитом для крепления датчика (тип 1) плоской поверхности. Размер монтажной площадки (Д×Ш×В): $28 \times 28 \times 5$ mm. Дополнительная комплектация запросу Заказчика возможна Площадка с комплектация монтажной площадки с магнитом магнитом для крепления датчика к трубе. (тип 2) Размер монтажной площадки (Д×Ш×В): 28×28×8 mm.

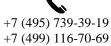
zetlab.com



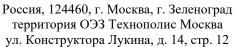

ПРИЛОЖЕНИЕ А. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

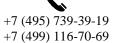
	Наименование	Значение			
№	характеристики	ZET 139A	ZET	139B	ZET 139C
	марактернетики	ZET 139G	ZET	139H	ZET 139I
	МЕТРОЛО	ГИЧЕСКИЕ ХАРАЬ	КТЕРИСТ	ТИКИ	
				рение	
1	Измеряемая физическая			корость	
1	величина			емещение	
				ратура	
2	Количество осей			Y, Z)	
		диапазон измере			2.00
	Мгновенное ускорение (м/с²)	±72		144	±360
	СКЗ виброускорения (м/c ²)	от 0,1 до 50		до 100	от 0,1 до 250
	СКЗ виброскорости (мм/с)	от 0,1 до 40		4 до 80	от 0,1 до 200
	СКЗ виброперемещения (мм)	от 0,003 до 1	от 0,0	04 до 2	от 0,003 до 5
	Диапазон рабочих частот, Гц				
	(при измерении мгновенных		от 0,1 ,	до 1000	
	значений ускорения)				
3	Диапазон рабочих частот, Гц				
	(при измерении СКЗ	от 10 до 1000			
	виброускорения)				
	Диапазон рабочих частот, Гц	10 4000			
	(при измерении СКЗ	от 10 до 1000			
	виброскорости)				
	Диапазон рабочих частот, Гц	10 200			
	(при измерении СКЗ	от 10 до 200			
	виброперемещения)		40	+70	
-	Температура (°С)			до +70	
	П	погрешность изме			
	Доверительные границы	для модифика			модификаций:
	основной относительной	ZET139A, ZET139B,	ZE1139C	ZE1139G,	ZE1139H, ZE1139I
	погрешности измерений при				
4	доверительной вероятности 0,95				
	- ускорения	± 4 % ± 6 %			± 6 %
	- виброускорения				± 6 %
	- виброскорости	± 4 % ± 6 %			
	- виброперемещения	± 10 % ± 10 %			
5	Фильтры	ISO 6487:2015 CFC60, CFC180, CFC600, CFC1000			C600, CFC1000
	Фильтр для расчета				
6	параметров вибрации согласно				
	ΓΟCT ISO 2954-2014				



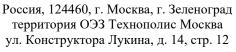


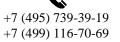
	П		Значение		
№	Наименование	ZET 139A	ZET 139B	ZET 139C	
	характеристики	ZET 139G	ZET 139H	ZET 139I	
	1	ВЫДАВАЕМЫЕ ЗН.		221 1371	
	Мгновенные значения по		отном диапазоне DC-	1200 Гц или после	
	одной оси (X, Y, Z)	фильтров			
		1) Линейное ускоре	ние (среднее постоян	ное), g	
			ние (среднее постоян		
		3) СКЗ виброускоре		,,	
		4) СКЗ виброускоре			
		5) СКЗ виброскорос			
		6) СКЗ вибропереме	ещения, мм		
		7) Размах ускорения	ı, g		
		8) Размах ускорения	$I, M/c^2$		
7		9) Размах скорости,	MM/c		
	Попомотрум на росум соду	10) Размах перемещ			
	Параметры по всем осям	11) Пик-фактор уско	орения		
		12) Пик-фактор ској			
		13) Пик-фактор пере			
		14) Пиковое значені			
		15) Пиковое значені			
		16) Куртозис линей:			
		17) Модуль вектора ускорения			
		18) Модуль вектора виброскорости			
		19) Модуль вектора виброперемещения			
		20) Фаза пикового в	ектора виброскорост	И	
0	Встроенный датчик		Есть		
8	температуры	(значение вычитывается из регистра по протокол			
		Моdbus RTU) Меандр на частоте 40-100 Гц для снятия АЧХ			
9	Conservation				
9	Самоконтроль		цение по статике кон	•	
	ТЕХНИ	<u> </u>	Проверка разрядност ЕРИСТИКИ	И	
	Частота передачи мгновенных				
10	значений ускорения		4 кГц по одной оси		
	Частота обновления	1.7. (4	
11	результатов в режиме расчета		при времени усреднен		
	параметров	101ц (п	ри времени усреднен	ия 0,1 с)	
12	Тип датчика	встрое	енный MEMS акселер	рометр	
13	Интерфейс передачи данных		USB		
14	Протокол обмена		Modbus RTU		
		АЦИОННЫЕ ХАРА			
15	Питание устройства		5 B		
16	Мощность потребления		0,5 Вт		
17	Защита от переполюсовки		есть		
18	Степень защиты		IP67		
19	Габаритные размеры		28×28×18 мм		
20	Macca		90 г		
21	Температурный диапазон		от -40 до +70 °C		
	эксплуатации				




ПРИЛОЖЕНИЕ Б. КАРТА РЕГИСТРОВ

Регистр (dec)	Регистр (hex)	Тип	Описание				
	Результаты вычисления параметров по оси X						
55556	0xD904	float	Линейное ускорение оси X, g				
55558	0xD906	float	Линейное ускорение оси X, м/с ²				
55560	0xD908	float	СКЗ виброускорения оси X, g				
55562	0xD90A	float	СКЗ виброускорения оси Х, м/с2				
55564	0xD90C	float	СКЗ виброскорости оси Х, мм/с				
55566	0xD90E	float	СКЗ виброперемещения оси Х, мм				
55568	0xD910	float	Размах виброускорения оси X, g				
55570	0xD912	float	Размах виброускорения оси X, м/с ²				
55572	0xD914	float	Размах виброскорости оси X, мм/с				
55574	0xD916	float	Размах виброперемещения оси X, мм				
55576	0xD918	float	Пиковое значение виброускорения оси X, g				
55578	0xD91A	float	Пиковое значение виброускорения оси X, м/с ²				
55580	0xD91C	float	Пиковое значение виброскорости оси X, мм/с				
55582	0xD91E	float	Пиковое значение виброперемещения оси X, мм				
55584	0xD920	float	Пик-фактор виброускорения оси X				
55586	0xD922	float	Пик-фактор виброускорения оси X				
55588	0xD924	float	Пик-фактор виброскорости оси X				
55590	0xD926	float	Пик-фактор виброперемещения оси X, м/с ²				
55592	0xD928	float	Куртозис оси Х				
55594	0xD92A	float	Φ аза пикового вектора виброскорости оси $X,^\circ$				
55596	0xD92C	float	Асимметрия оси X				
		Pes	ультаты вычисления параметров по оси Ү				
55684	0xD984	float	Линейное ускорение оси Y, g				
55686	0xD986	float	Линейное ускорение оси Y, м/с ²				
55688	0xD988	float	СКЗ виброускорения оси Y, g				
55690	0xD98A	float	СКЗ виброускорения оси Y, м/с ²				
55692	0xD98C	float	СКЗ виброскорости оси Y, мм/с				
55694	0xD98E	float	СКЗ виброперемещения оси Y, мм				
55696	0xD990	float	Размах виброускорения оси Y, g				
55698	0xD992	float	Размах виброускорения оси Y, м/с ²				
55700	0xD994	float	Размах виброскорости оси Y, мм/с				
55702	0xD996	float	Размах виброперемещения оси Y, мм				
55704	0xD998	float	Пиковое значение виброускорения оси Y, g				
55706	0xD99A	float	Пиковое значение виброускорения оси Y, м/с ²				
55708	0xD99C	float	Пиковое значение виброскорости оси Y, мм/с				
55710	0xD99E	float	Пиковое значение виброперемещения оси Y, мм				




zetlab.com

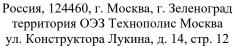
Регистр (dec)	Регистр (hex)	Тип	Описание			
55712	0xD9A0	float	Пик-фактор виброускорения оси Ү			
55714	0xD9A2	float	Пик-фактор виброускорения оси Ү			
55716	0xD9A4	float	Пик-фактор виброскорости оси Ү			
55718	0xD9A6	float	Пик-фактор виброперемещения оси Y, м/с ²			
55720	0xD9A8	float	Куртозис оси Ү			
55722	0xD9AA	float	Фаза пикового вектора виброскорости оси Y, °			
55724	0xD9AC	float	Асимметрия оси Ү			
Результаты вычисления параметров по оси Z						
55812	0xDA04	float	Линейное ускорение оси Z, g			
55814	0xDA06	float	Линейное ускорение оси Z, м/с ²			
55816	0xDA08	float	СКЗ виброускорения оси Z, g			
55818	0xDA0A	float	СКЗ виброускорения оси Z, м/с ²			
55820	0xDA0C	float	СКЗ виброскорости оси Z, мм/с			
55822	0xDA0E	float	СКЗ виброперемещения оси Z, мм			
55824	0xDA10	float	Размах виброускорения оси Z, g			
55826	0xDA12	float	Размах виброускорения оси Z, м/с ²			
55828	0xDA14	float	Размах виброскорости оси Z, мм/с			
55830	0xDA16	float	Размах виброперемещения оси Z, мм			
55832	0xDA18	float	Пиковое значение виброускорения оси Z, g			
55834	0xDA1A	float	Пиковое значение виброускорения оси Z, м/с ²			
55836	0xDA1C	float	Пиковое значение виброскорости оси Z, мм/с			
55838	0xDA1E	float	Пиковое значение виброперемещения оси Z, мм			
55840	0xDA20	float	Пик-фактор виброускорения оси Z			
55842	0xDA22	float	Пик-фактор виброускорения оси Z			
55844	0xDA24	float	Пик-фактор виброскорости оси Z			
55846	0xDA26	float	Пик-фактор виброперемещения оси Z, м/с ²			
55848	0xDA28	float	Куртозис оси Z			
55850	0xDA2A	float	Фаза пикового вектора виброскорости оси Z, °			
55852	0xDA2C	float	Асимметрия оси Z			

ПРИЛОЖЕНИЕ В. РЕЖИМЫ РАБОТЫ СВЕТОДИОДНОЙ ИНДИКАЦИИ

В таблице В1 представлена информацию о режимах работы светодиодной индикации, расположенной на корпусе вибропреобразователя ZET 139. В зависимости от совместных режимов работы синего и зеленого светодиодов существует возможность контролировать состояние устройства и диагностировать неисправности.

Таблица В1 Состояние светодиодной индикации

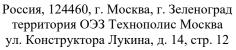
Состояние индикации	Форма индикации в течении 2-х секунд	Описание работы светодиодной индикации
Выделение устройства или сохранение	1 2	Синий – горит постоянно Зеленый – горит постоянно
Ошибка (нет связи или неисправный датчик)	1 2	Синий – горит постоянно Зеленый – горит 500 мс за 1 секунду
Заводские настройки (адрес 2)	1 2	Синий – горит постоянно Зеленый – горит 100 мс за 2 секунды
Скрытый протокол (только для RS- 485)	1 2	Синий – горит 500 мс за 1 секунду Зеленый – горит 100 мс за 2 секунды
Штатный режим	1 2	Синий – горит 100 мс за 2 секунды Зеленый – горит 100 мс за 2 секунды

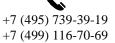

ПРИЛОЖЕНИЕ Г. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

В таблице Г1 представлено описание встречающихся в документе терминов.


Таблица Г1 Описание терминов

Термин	Описание	
Куртозис	Определяет степень отклонения случайного сигнала от нормального распределения Гаусса. Чем выше значение куртозиса, тем большие «выбросы» присутствуют в сигнале при том же СКЗ сигнала. Том же СКЗ сигнала.	
Пик-фактор	Отношение максимальной мощности сигнала к его средней мощности Unux Umakc Umakc Umuh O	
СКЗ	Среднеквадратичное значение	
CFC	Фильтры, соответствующие частотным классам, могут быть применены к измерительному каналу контрольно-измерительных приборов при испытаниях на удар, проводимых на дорожных транспортных средствах по стандарту ISO 6487:2015	
CFC 60	Частотный класс СFC 60 ************************************	





Термин	Описание
CFC 180	Частотный класс CFC 180 Почення пере СУД Тумент пере СУД В почення пер СУД В почення пере СУД В почення пер СУД В поченн
CFC 600	Частотный класс СFC 600 Поличения пол. СКИ ТОВ
CFC 1000	Частотный класс CFC 1000

